Alum shale and uranium

Since August 2018 it is no longer allowed to open a mine with the aim to extract uranium from Swedish bedrock. This law came into effect after years of discussions and changes have been made accordingly in the Minerals Acts and the Swedish Environmental Code.

Uranium is now removed from the list of concession minerals in the Minerals Acts (1 kap. 1 § 1 minerallagen). This means that it is no longer possible to apply for exploration licenses or exploitation concessions when it comes to uranium.

And, according to the Swedish Environmental Code (9 kap. 6 i § and 17 kap. 1 §) it is no longer possible to obtain permission to extract, process and enrich uranium from mines if the aim is to use the fissile properties of uranium. The prohibition applies both to mining operations with the extraction of uranium as a by-product as well as recycling of mining waste.

When I looked at the legal documents for this specific issue, I noticed that things are not as clear-cut as one might assume when reading the above text. As outlined here, the prohibition is not valid for mines that extract and process iron ores, basic metals, rare earth elements or other minerals for other purposes than the use of uranium as fissile material.

Does this mean that uranium can still be mined as long as it is not used for fissile purposes? Or, does it mean that uranium as a specific element can no longer be extracted and processed, but that rocks containing uranium (and many rocks do contain uranium) can still be mined and processed to for example extract iron ores, basic metals and minerals? Probably one can answer ‘yes’ to both of these questions.

Torbernite, an important secondary uranium mineral
Downloaded from: https://en.wikipedia.org/wiki/Uranium_ore#/media/File:Torbernite_-_Cuneo,_Italia_01.jpg

What would it mean if we apply the prohibition of uranium and its exceptions to my favorite topic, the Alum shale, which is known for its high uranium content?

It would mean that all kinds of minerals and metals can be extracted from the uranium-rich Alum shale, except for uranium if it will be used for its fissile properties. But the problem is that uranium is present in the Alum shale. And that it is present in the rock fragments and the mining waste, which will be deposited in the tailings.

Uranium is very susceptible to weathering at low and high pH, which means that it is easily transported into the groundwater and streams. Mining waste from an Alum shale mine is thus not so much different from processed and mined shale in an uranium mine. And the potential environmental effects of uranium mining are well known. Some of it you can find here and here. Mining Alum shale will just entail similar environmental problems.

The obvious problems connected with mining of Alum shale have of course been recognized and have been known for many years. Point #33 in the so-called January Agreement between four of Sweden’s political parties therefore also addresses mining and exploitation of Alum shale.

How this issue is being addressed and what its outcome will be, is however still very uncertain. My guess is that if point #33 in the so-called January Agreement is being addressed it will probably end up in a regulation similar to the one for uranium: a regulation with two sides. A regulation to which all parties can agree on, a regulation that does not fence off the industry and that keeps the environmentalists happy at the same time. A very Swedish way of solving a problem.

Let’s just face the facts: the Alum shale contains many of the critical minerals and metals that are interesting and in demand right now. Mining the Alum shale could generate a lot of money.

For an economy that builds on ‘sustainable’ economic growth and for a government and an industry, which continuously talk about sustainable mining and ‘we also have to contribute our share‘ (and other moralizing statements), there is far too much money to be made and prestige to be lost. Thus I have a hard time believing that the outcome of the discussions around point #33 in the so-called January Agreement will be a complete prohibition of mining Alum shale.

The picture of sustainable mining that the mining industry tries to paint is nothing else but jumping on the sustainability bandwagon. Using the transition to a green technology as an argument for new raw materials and for extracting more minerals and metals from new mines is nothing else than rebranding mining by adding the word sustainable.

Maybe we should start scrutinizing how the words ‘sustainable’ and ‘sustainability’ are used and in which circumstances. It seems to me that these words are being grossly diluted and used everywhere just to give the impression of “we are caring about the environment and our children’s future”. I have a hard time believing this without seeing clear and sustainable proofs.

Posted in Alum Shale, Österlen, Jämtland, Shales, Thoughts and Tales | Tagged , , , , , , , , , | Leave a comment

Samrådsunderlag – Project Viken

The Canadian mining company EU Energy Corp. is planning to apply for opening several open-cast mines in Viken in Jämtland after years of exploration, drilling and analyzing the drill core samples. A good overview regarding EU Energy Corp.’s whereabouts and response to these can be found in the web-based newspaper Grus & Guld (published March 18, 2019).

An application to Bergsstaten to open a mine has to be accompanied by an Environmental Impact Assessment. According to Swedish law, the first step for a company is therefore to consult various stakeholders and ask them to provide input to what the Environmental Impact Assessment should encompass. For this, a company sends out a ‘samrådsunderlag‘ to all concerned parties. It is not easy to translate the term ‘samrådsunderlag’ into English. Maybe one could translate it as providing a basis for joint consultations.

EU Energy Corp. submitted such a joint consultation document last year in October. On the Internet I could only find responses to this document by Östersund municipality (dated February 5th, 2019) and the Jämtland-Härjedalen region (dated March 4th, 2019). There are probably more, but I could just not find them.

Let’s start with saying that EU Energy Corp.’s ‘samrådsunderlag’ is a meager document. It states that 152 drill holes have been made and analyzed to delineate the area where the highest vanadium content in the Alum shale can be found. See the figure below.

Figure 2 from EU Energy Corp.’s samrådsunderlag, 2018-10-12 delineating the area in question for opening open-cast mines in Alum shale to extract vanadium.

The company further writes that it plans to open four open-cast mines that will be about 30-35 m deep. From these mines around 3.7 million tonnes of Alum shale with a vanadium pentoxide content of about 0.24% can be extracted. Although the company’s focus is on vanadium, they note that other metals are present in the Alum shale, among others, molybdenum, copper, nickel, zinc and uranium. But there is no mentioning whether there are plans to also extract any of these other metals.

The glacial sediments and the limestone that overlie the alum shale will, according to EU Energy Corp.’s ‘samrådsunderlag’, be used to construct a dam for the planned tailings pond (called ‘sandmagasin’ in Swedish), where the rest material (i.e. what is left after extraction of the desired metals) will be stored. The company writes that the material that will be stored in the tailings dam (sandmagasin) will later be used to refill mine 1. The same procedure will be employed for the other mines.

The newspaper Grus & Guld (March 18, 2019) published this overview figure showing where the four mines, the tailings dam and the processing plant will be located and where the overburden, i.e. the limestone and the sediments above the Alum shale will be stored. Downloaded from:
https://issuu.com/grusoguld/docs/g_g_webbtidning

To extract vanadium from the Alum shale, a processing plant will need to be built within the area (see figure above – Anrikningsverk). Processing the Alum shale will likely include crushing, grinding and closed leaching with various chemicals. The processes to be used are – according to EU Energy Corp., however still under development. But – it would actually be crucial to know which processes are going to be employed and which chemical leaching technique/s. Because it will be the crushed and processed Alum shale, i.e. the remains after extraction of vanadium that are being deposited in the tailings pond, together with the water used during processing. And these remains are not just simple crushed rock fragments, but rather a toxic cocktail. What will end up in the tailings and what will eventually be moved back into the hole created by a mine is thus not a trivial issue.

EU Energy Corp. also writes that overflow water from the tailings ponds will be discharged into local water bodies. It would be interesting to know what the composition of this overflow water is … how will it impact local water bodies, the aquatic flora and fauna and the groundwater? Maybe the statement by EU Energy Corp. that water from the tailings could change the water chemistry in nearby waters could give a hint of what the future might look like.

Under ‘future environmental impacts’, EU Energy Corp. mention that the landscape will be changed, but that the mines will be filled with the rest material from the tailings (sandmagasin) and covered by moraine. They also note, among others, that the groundwater level will be lowered, that vibration and noise will occur and that the air quality could be influenced by mining dust.

Groundwater is in the minds of many people, especially after the dry summer of 2018. But what is much less known is that vanadium, and especially vanadium pentoxide, is toxic. Se also here and here for more information regarding vanadium’s impact on health.

Berg municipality and the Jämtland-Härjedalen region responded to EU Energy Corp.’s joint consultation document (samrådsunderlag) and have listed a large number of points that need to be addressed in the Environmental Impact Assessment. Most of the points raised are kept fairly general, but this will none the less mean that a comprehensive and detailed Environmental Assessment Report needs to be presented by the company.

When I talked to a geology colleague with experience form the mining industry and asked why municipalities respond in such a general way and do not ask very specific questions when it comes to for example, the geology and geochemistry of the rocks, the composition and toxicity of the tailings, or the hydrological impact on groundwater, lakes and river systems, the answer was: municipalities often do not have the expertise, means and finances to check if what a company writes in respect to geology, geochemistry, hydrology, etc. is entirely correct. Municipalities often don’t have the money to employ another independent consultancy agency to perform the necessary analyses that would allow verifying and controlling a mining company. I have no idea if this is the case in general, but I would really be interested to know if this is a reality that many municipalities are confronted with.

In my world, i.e. in the research world, it is not possible to publish data that cannot be verified (although this happens now and then!). The usual way is that manuscripts are reviewed and scrutinized by colleagues before they can be published and data sets that accompany a manuscript are made available online. In this way other researchers can use the data sets and can also check on what the interpretations are based on.

In theory this scrutinizing should also work for a mining company, which submits an Environmental Assessment Report. It is just not clear for me which independent institution will scrutinize these documents. Bergsstaten and the Geological Survey of Sweden may be regarded by some as independent institutions. However their close link to the Ministry of Enterprise and Innovation does not make them independent institutions.

From my scientific perspective I would for example expect to find the following details in an Environmental Assessment report by EU Energy Corp. in respect to their planned mines in Viken:

How will the mine look like? How many tonnes of shale will actually need to be processed to obtain the desired quantity of vanadium? How wide and deep will each mine need to be to extract XX tonnes of shale? How stable will the mine be? Have the consequences of a lowered groundwater level on the local and regional water supply been demonstrated?

A detailed description of the processing plant and the complete leaching process: which chemicals will be used and in which quantities during the different leaching steps; which elements will be extracted other than vanadium; what is the exact chemical composition of the leaching residue to be deposited in the tailings? How will the residues react to weathering and which chemical elements will be released and in which quantity? Has each leaching step been tested scientifically in the laboratory and in the field?

Tailings dam: location, stability and size of the tailings dam; amount and chemical composition of the overflowing water; a hydrological model including all chemical elements showing how the overflowing water will change the chemistry of nearby lakes and rivers and which consequences this will have.

The Alum shale does not only contain vanadium, but a range of different elements, such as for example barium, cobalt, chromium, copper, lanthanum, molybdenum, niobium, nickel, scandium, tin, tungsten, zinc and uranium. If none of these is extracted by leaching, they will all end up in the tailings dam and eventually in the infill of the mine. This would mean that the infill will be composed of several of the so-called innovation-critical minerals and metals – what a waste of time and money!

The infill will also contain uranium. It is well known that the Alum shale in general is rich in uranium and that parts of the shale are very rich in uranium. Weathering releases uranium and broken Alum shale is even more susceptible to weathering than intact bedrock. Just covering the infill, i.e. the processed Alum shale, with moraine is not the best solution as has been demonstrated for Kvarntorp in Närke.

It surprises me over and over again that scientifically unsupported statements that will have enormous environmental impacts and other consequences can pass through without being thoroughly scrutinized. But let’s wait and see what EU Energy Corp.’s Environmental Assessment Report will contain. I am looking forward to reading it.

Posted in Alum Shale, Österlen, Jämtland, Shales, Thoughts and Tales | Tagged , , , , , , , , , , , , | Leave a comment

Sometimes I am wondering …

… if my writing is easy enough to understand. My intention is not to reach out to geologists or geology students, but to reach a wider audience with little or no geological knowledge. Although I try to keep my texts simple, I realize that I sometimes drift away and my writing becomes complicated for someone who is not a geological expert.

It is not easy to simplify things. Leaving out too much means that one cannot present the whole picture or important details and this in turn can lead to misunderstandings and misinterpretations, and also to speculations.

Geology is not a very complicated subject, but it has its own language and scales. What is special about geology however is that one needs to think in both time and space.

It really is a pity that geology is not taught in schools in Sweden. Everyone can get a basic understanding of mathematics, physics, chemistry and biology in school, but geology remains an almost completely unknown subject. Of course some teachers may mention rocks, sediments, soils, volcanoes, dinosaurs, continental drift, earthquakes and mountain building as part of a physics, biology or chemistry class, or as part of a natural science class. But by doing so, geology is not perceived as a subject on its own and the importance of geology for society is largely downplayed.

Yet, geology impacts us in so many ways and surrounds our daily life. Bedrock and sediment composition determine the type of vegetation; construction work (tunnels, buildings, roads) needs to know the properties of bedrock and sediments; we use rocks and sediments for building material; we use minerals and metals for almost everything, such as for example in cars, phones, computers, kitchen ware, energy (oil, coal, peat, nuclear energy, geothermal, and so on), weapons, chemical industry, jewelry, … this list could be made really long! Even salt, which you probably use daily is a geological resource!

A few years ago I gave a lecture about Earth’s resources and tried to make students understand how much geology really surrounds us. When I compiled the lecture, it struck me how many of the simple things we use every day are of geological origin. I thought I could share parts of this (by now old) lecture with you so that you can get an idea about geology’s impact on our daily lives.

Because geology is so important, and because geology has so many consequences when it comes to our daily life, it is really surprising that we know so little about it and that kids are not educated in geology in school. A consequence of this is that geology is not a familiar subject when students apply to university. And therefore not many students study geology, although the job market for geologists is really good.

Geological knowledge is not only needed in consulting companies and the industry, but is really much needed ‘on the other side’ to assist municipalities and other stake holders so that they are able to address and scrutinize geological issues.

With the awakened interest in mining and the call for new raw materials to satisfy the transition to a ‘green’ technology, geological knowledge and understanding is more important than ever – for everyone.

Posted in Thoughts and Tales | Tagged , | Leave a comment

… and they are still drilling

August 8th, 2019 ScandiVanadium sent out a press release where they informed that the drilling campaign in Lyby has started. The press release stated that a total of five drill holes with a maximum depth of between 60 and 125 m will be cored and that it will take 2-4 days per locality to core. Five times four days makes 20 days. According to my calendar, the whole drilling should have been completed by September 5th.

Coring locations 30, 31, 32, 33, 34 and 35 according to ScandiVanadium’s work plan of January 8th, 2019.

It is early October by now.

Why this delay? Obviously some of the originally planned localities did not turn out as expected by ScandiVanadium. So what are ScandiVanadium‘s new plans?

Part of the Geological Map A212 made by the Geological Survey of Sweden 1999 (Erlström et al. 1999). The light blue and light olive colors show where rocks younger than the Alum shale are close to the surface; the beige color marks where the Alum shale has been mapped close to the surface. Red squares indicate the approximate location of ScandiVanadium’s original and new drill holes.
The target rock, the Dictyonema shale, was not reached in holes 31 and 34. Therefore coring locations are being moved. Hole 31 is moved to the new coring point 2 (HDD004) and hole 34 (or coring point 5/HDD005 is moved further to the northwest. A new hole 3b (HDD003b) is added. Note that the position of the drill holes is approximate.

The information I have from Hörby commune dated 16th September 2019 (Dnr: M-2019-32) and 23rd September 2019 (Dnr: M-2019-32) is the following (note my free English translation of the Swedish text): Coring point 31, which is now called coring point 2 (HDD004), will be moved 300 m further to the north and in the middle of the Lyby peatbog. The reason given for this is that the coring equipment does not allow reaching the bedrock in question. Coring point 34, which is now called coring point 5 (HDD005), is moved 1 100 m to the northwest out of the same reason, i.e. the coring equipment did not allow reaching the target bedrock. In addition, a new core locality is needed, according to ScandiVanadium, to make sure that the whole target bedrock can be drilled. This new hole, which is called 3b (HDD003b), is located ca. 700 m to the east of coring point 30 (or coring point 1).

The target bedrock is, as you all may know, the Dictyonema shale, which is the uppermost part of the Alum shale formation (see Figure below). I interpret the information I have from Hörby commune as such that the coring company did not have enough equipment to core deep enough to reach the shale in question, which means deeper than 125 m. From this I draw the further conclusion that ScandiVanadium drilled through Silurian and Ordovician rocks at points 31 and 34, and that these rock layers had much greater thicknesses than anticipated (more than the 125 m as indicated in the company’s work plan).

But all of this sounds really just too strange. A drilling company can easily add more rods to drill deeper. If they don’t have the equipment on site, they can ask for it to be sent. But then ScandiVanadium may be not interested in Dictyonema shale that lies very deep (>125 m deep)? The whole story did however bother me and therefore I dug deeper into the existing geological literature (or let’s say I read the existing papers more carefully than before).

On the geological map shown above it says that the Dictyonema shale can be found in about 35 m depth (Oal 35 within the olive colored part) below younger rock layers (see figure above). This assumption is based on mapping and coring data from SGU (Erlström et al. 1999, 2001). A deep drill core, 1 to 2 km south-southeast of Lyby, had suggested that Lower Ordovician Alum shale (which is the Dictyonema shale) is present. The SGU data sets also indicate that the rock layers in the area dip 10–15° to the SE and that several NW–SE oriented faults and dolerite dykes are present and divide the bedrock into minor blocks (Erlström et al. 2001). My thoughts were therefore that ScandiVanadium may have hit a dolerite dyke or that the Dictyonema shale really was located too deep to be mined because of the existing fault system.

But things still did not make sense. Therefore I read a later paper by Erlström et al. (2001) again. The article reports results from another deep drill core that was obtained in 1998 at the northern edge of the Lyby peatbog (900 m SSE of Lyby church) (Erlström et al. 2001). This drill core is thus a different one from that mentioned above. The succession of rock layers in the new (Lyby peatbog) drill core suggested that the Komstad limestone lies directly on top of the Alum shale. Now this is really interesting.

Simplified Precambrian to Ordovician stratigraphy for eastern Skåne. Modified from Eriksson (2012).

Finding the Komstad limestone on top of the Alum shale would mean that chunks of rocks are missing in Lyby – but which and how much of it? Erlström et al. (2001) further write that the whole Alum Shale interval (35.5-55 m) present in their drill core can be correlated to the upper Cambrian. Now this tells me that the Dictyonema shale, the Björkåsholmen formation and the Toyen shale (which are of lower Ordovician age) are not present at all.

To make a long story short: the drill core from 1998 from the Lyby peatbog and published by Erlström et al. (2001) suggests that finding the Dictyonema shale in the Lyby area could prove to be very difficult, because the chances are very high that there is no Dictyonema shale at all in Lyby.

ScandiVanadium did not chose the easiest place in terms of geology and despite reports by their ‘able’ or ‘competent’ geologist, things have turned out much more tricky. Maybe the homework was after all not fully done? And with this I mean that the company’s and the able geologist’s knowledge of the local geology is poor and that not enough information had been gathered prior to drilling.

What the whole story tells us is that with enough background knowledge in geology, one would not have chosen this site to search for the Dictyonema shale in the first place.

This story also shows that those who provide permits based on a company’s working plan, that is the Swedish Mining Inspectorate (Bergsstaten), lack the necessary geological knowledge and only handle applications following jurisdiction, i.e. the Mineral Acts.

This story further shows that local authorities do not have local and regional geological knowledge since they accept a working plan without questioning if it is at all appropriate from a geological perspective.

So let’s see if ScandiVanadium finds the Dictyonema shale after all in Lyby. If not, then this specific case will be a perfect example of geological incompetence on all levels.

Reference:

Eriksson M., 2012: Stratigraphy, facies and depositional history of the Colonus Shale Trough, Skåne, southern Sweden. Dissertations in Geology at Lund University, No. 310, 37 pp. https://lup.lub.lu.se/student-papers/search/publication/3044900

Erlström, M., Ahlberg, P. & Löfgren, A., 2001: Lower Palaeozoic stratigraphy at Lyby and Tängelsås, central Scania, southern Sweden. GFF, Vol. 123 (Pt. 1, March), pp. 7–14. Stockholm. ISSN 1103-5897. https://www.researchgate.net/publication/233339018_Lower_Palaeozoic_stratigraphy_at_Lyby_and_Tangelsas_central_Scania_southern_Sweden

Erlström, M., Kornfält, K.-A. & Sivhed, U., 1999: Bedrock map 2D Tomelilla NV, scale 1:50,000. Sveriges geologiska undersökning Af 212.

Posted in Alum Shale, Österlen, Jämtland, Thoughts and Tales | Tagged , , , , , | Leave a comment

The players around Myrviken

Given the information gained from studying SGU’s 28 deep drill cores from around Myrviken in Jämtland, it is of no surprise, that Continental Precious laid their eyes on the Jämtland Alum shale and applied for exploration permits already in 2005 for the sites Hackåsen, Viken, Kämpdalen, Bölåsen and Åbbåsen. From then on, things moved fast. Already 2007, a new player showed up, Vanadis Battery Metals AB, who gained licenses for Häggån 1; and in 2008 Continental Precious obtained licenses for Hackåsen 2 and Vattjom and in the year 2016 Canada-based EU Energy Corp. took over the licenses that had been granted to Continental Precious. Confusing? Yes!

View over Oviken.
Photo credit: Toggan. Downloaded from https://sv.m.wikipedia.org/wiki/Fil:Oviken.jpg

Between 2015 and 2018 several more new exploration licenses were granted: Kinderåsen 1, Bölåsen 1, Skallböle 1 and Möckelåsen 1 to Vanadis Battery Metals AB. And EU Energy Corp.‘s exploration licenses for Hackåsen 2 and Vattjom were extended. Here you can find a map showing all the exploration permits granted for Sweden and once you zoom in on Östersund, you will find those that have been granted for the Storsjö area.

I looked a bit into the applications for obtaining exploration licenses and into the decisions issued by Bergsstaten to understand more about how the whole exploration business in the Storsjö area has evolved.

Continental Precious/EU Energy Corp. gained licenses for molybdenum and vanadium in Åbbåsen, Bölåsenand Hackåsen; for vanadium in Hackåsen 2; and for vanadium, nickel, zinc and uranium in Vattjom. Since it is no longer allowed to mine uranium in Sweden and since vanadium prices were on the rise, focus of the exploration company has shifted to vanadium.

Australian company Aura Energy / Vanadis Battery Metals AB, applied for investigating the Alum shale for its content of molybdenum, nickel, oil and uranium in Häggån 1 and of molybdenum in Kinderåsen 1, Bölåsen 1, Skallböle 1 and Möckelåsen 1. The ban on mining uranium in Sweden, which came into effect 2018, led the company to also shift focus to vanadium.

Exploratory drilling and analyses of the drill cores, the 2018 ban on uranium and the current focus on vanadium for use in redox-flow batteries has led the companies to more closely define the two areas where most of the desired metals can be found:

Location of the two areas, the Häggån 1 project by Vanadis Battery Metalls/Aura Energy and the Viken Project by EU Energy Corp. in the southern Storsjö area. The companies usually do not show the complete Storsjö area. See figures below.
Downloaded from Google maps

According to EU Energy Corp.‘s web site, the company has already started base line studies for obtaining an exploitation permit for their so-called Viken Project. This means that the company has clear plans for an open-cast mine to extract vanadium within the next three years.

The location of EU Energy Corp.’s Viken Project, east of Myrviken and close to Lake Storsjön. Note that the uranium content – although analysed – is not mentioned. Downloaded from:
https://www.euenergycorp.com/viken

EU Energy Corp.‘s Mr. Purdy claims that leakage of uranium from the planned mine and the mining waste to the groundwater and to the lake will not occur, because mining will be done in a more sustainable way. Dear Mr. Purdy – please explain what you understand under the terms ‘sustainable’ or ‘more environmentally friendly’ and please explain why your mine should be sustainable. Please also explain exactly how you will avoid that uranium or other toxic elements will leach from your mine’s mining waste. It is not enough to say that this will not happen. You need to prove – in a scientific way – that it will not happen. Unfortunately existing examples of uranium leakage contradict your statement.

In the same interview EU Energy Corp.‘s Mr. Purdy claims that the mine will create around 40 jobs during 15 years. And how many jobs will disappear because of the planned mine? Mr. Purdy also says that the planned mine will be much smaller than the mine that had originally been planned. Maybe someone should calculate what small means in this context. How deep will the mine have to be to extract the amounts of vanadium that are advertised? Where will the processing plant be built? Where will the waste be deposited?

Interestingly, a new company called American Battery Minerals has appeared on the horizon this year. I am citing from their website, “American Battery Metals entered into a non-binding letter of intent (“LOI”) dated April 25th, 2019 to acquire a 90% interest in the Viken project from E.U. Energy Corp., a private Canadian company.” (Website accessed Sept 24, 2019). Let’s see how this will develop.

The other player on the stage, Vanadis Battery Metals has a much more flashy web site compared to EU Energy Corp.. The company now seems to concentrate on their Häggån 1 project, but I have so far not found any information regarding applications for an exploration permit. Vanadis Battery Metals is, by the way, to 100% owned by Aura Energy.

Details of Vanadis Battery’s Häggån 1 project. Dowloaded from: https://www.vanadisbm.com/project

In their June 2018 Quarterly Report, Aura Energy write that they can extract 90 million tonnes of 0.42% grade vanadium pentoxide at Häggån and that 49 million tonnes of the high grade vanadium pentoxide lies between 20 and 100 depth. This would mean that a potential mine could be as deep as 100 m! In an October 25, 2018 update, Aura Energy summarized the drilling program, which included 17 drill holes in 2008, 25 drill holes in 2010, 10 drill holes in 2011, 14 drill holes in 2012, 1 drill hole in 2015 and 2 drill holes in 2017. By now, the Häggån area must look worse than an Emmentaler cheese given the many bore holes that have been made so far.

According to Aura Energy‘s October 2018 update, the estimated vanadium resource covers an area of around 4.4 x 3.4 km and is located between 10 m and 130 m depth, with a maximum at 275 m depth. Samples of the Alum shale were analyzed for their content in vanadium pentoxide and for a range of other metals and minerals. Also different leaching experiments have been performed to understand how most of the vanadium can be extracted. Acid pressure leach proved most successful as it led to 61% vanadium recovery. This method is usually employed to extract other metals, but there is also an increasing number of literature addressing acid pressure leaching experiments to extract vanadium both from, for example, mining slag and shale.

In an update, the company writes in August 2019, that 22 holes with a total of 2930 meters have been drilled and that they have encountered high contents of vanadium pentoxide (0.41-0.45 %) at depths of between 54 and 103 meters. In addition to vanadium, Aura Energy reports high contents of nickel, zinc and molybdenum, as well as of uranium. Should they plan on extracting the whole resource, then the mine will be pretty deep and the amount of mining waste will be gigantic.

Posted in Alum Shale, Österlen, Jämtland, Shales, Thoughts and Tales | Tagged , , , , , , , , , , , | Leave a comment

There is a lot of uranium in the Alum shale ….

In my last blog I wrote that not much has been published regarding the 28 deep drill cores made by SGU around Myrviken between 1977 and 1979. But I was not entirely correct. David Gee alerted me to a figure that was published in the SGU report by Andersson et al. (1985) (see reference below). In the appendix to this report is a figure showing the stratigraphy of Myrviken drill core 78005 as well as measurements of organic carbon, uranium and vanadium. The report can be downloaded from SGU’s website.

The SGU report, which was published long ago, is really interesting as it summarizes what was then known about the Alum shale in terms of its geological occurrence in Sweden, its geochemistry and its importance as an economic resource. It may even have laid the foundation for the intensive surveys that followed during later years. But this is just pure speculation from my side!

Here I cite from the Introduction chapter: That the Scandinavian alum shales are remarkable for their content of uranium has been known since the turn of the century. The local occurrence within the shales of kolm lenses containing up to c. 5 000 ppm U was reported by Nordenskiöld (1893). More recently the shales have been shown to contain unusually high concentrations of other trace elements, particularly vanadium, molybdenum and nickel and some rare earth elements. … The presence of the trace elements, along with a high organic carbon content provides the basis for exploitation. That the highest concentrations of the various components of economic interest are seldom enriched together in the same stratigraphic unit in the formation or within any one area is a major frustration to exploitation. The possibility of finding more favourable combinations of trace elements than those known today presents one of the chief incentives for further prospecting (Andersson et al. 1985, p. 5).

Figures 3 and 4 in the report by Andersson et al. (1985) also show the general distribution of the Alum shale in Sweden (see below). Both the Alum shale in Jämtland and the Alum shale in Skåne are now in the focus as an important resource for vanadium.

For Jämtland and the southern part of Storsjön, Figures 18 and 19 in Andersson et al. (1985) (see below) show a geological map with the location of the SGU drill cores (left) and a detailed transect across the area (right). The transect shows how the various layers are stacked upon each other. Core Myrviken 78005 for which various analyses exist, was drilled where the Alum shale was thickest. This enormous thickness is due to tectonic forces, which pressed layers upon layers of Alum shale upon each other. This also means that there is no real stratigraphic order in the whole pile of Alum shale because older layers are located on top of younger layers. Shortly – the Alum shale geology in Jämtland is pretty messy when compared to Skåne’s simple stratigraphy with more or less horizontal layers.

The complicated pattern of stacked upon Alum shale is certainly not a dream situation for a geologist, who would like to see some order, or at least would like to understand what is oldest and what is youngest and how the depositional environment of the Alum shale evolved. But as an economic resource it does probably not matter, because the only thing that is interesting is, how much of the so-called critical metals can be found. And there is pretty much of these, especially when it comes to vanadium! Just look at the Figure below, which is Figure A7 in Andersson et al. (1985). It shows the organic carbon content (%), uranium (ppm) and vanadium (ppm) in Myrviken drill core 78005.

The presence of so much vanadium in core Myrviken 78005 or better the repeatedly occurring very high vanadium contents are accompanied by slightly lower uranium contents and vice versa. My non-scientific guess is that the intervals with high vanadium could correspond to what is known in Skåne as the Dictyonema shale, because vanadium as high as 2000 ppm only seems to occur in the youngest part of the Alum shale. In Skåne this youngest part of the Alum shale is only up to about 25 m thick. But in Jämtland it seems that the youngest part of the Alum shale was several times squeezed into the older part of the shale. This squeezing and stacking thus makes the whole series interesting as an economic resource, because vanadium in higher concentrations is found as far down as 130 m depth.

I am not so much interested in the vanadium content of the shale, but rather in the Alum shale’s uranium content. And this is very high. On average between 100 and 200 ppm, and in some horizons it is actually higher than 200 ppm. Now these are really high concentrations. Imagine that the companies who want to exploit the Alum shale for vanadium will need to deposit the remaining shale, once they have leached out the vanadium. Where will all these enormous piles of Alum shale waste be stored? Waste that contains huge amounts of uranium! Which measures will be taken so that no uranium or none of the other toxic elements that are known to be contained in the shale, will leak out into the groundwater or into the nearby lakes?

Up to date there is no technology available (although some companies say that there is) that would allow safe mining of Alum shale and safe storage of the mining waste. Unless such a technology has been developed and scientifically tested, I’d rather keep my fingers off the whole business.

Yes, we may need these innovative metals, and yes the Alum shale contains many of these, but they cannot be mined before adequate and really sustainable technologies have been developed so that groundwater, soils, forest and agricultural land will not be polluted for centuries to come. Do we not want to leave a healthy environment to our children and grandchildren?

Or are we so blinded by talks of economic progress and the need for a rapid transition into green (!) / fossil-free technologies that we keep forgetting where the stuff that should help us transition comes from and what it actually will mean to dig it up and store the waste? Some serious reflections would be appropriate.

References:

Andersson, A., Dahlman, B., Gee, D. E. and Snäll, S. (1985). The Scandinavian Alum shales. Sveriges Geologiska Undersökning. Serie Ca Nr. 56, 54 pp.

Posted in Alum Shale, Österlen, Jämtland, Shales, Thoughts and Tales | Tagged , , , , , , , , , , , | 2 Comments

Where is the vanadium in Jämtland?

In my last blog I wrote that the geology of Skåne and Jämtland is different because tectonic processes affected Jämtland much more than they did affect Skåne. This means that rocks in Jämtland are thrust and partly folded, whereas rocks in southern Sweden ‘only’ experienced some squeezing and dislocation. Alum shale deposits in Skåne are therefore found as more or less horizontal layers, whereas the situation is very different in Jämtland.

Information on Jämtland’s geology can be obtained from the work by Karis and Strömberg (1998) and from geological maps for the region, both of which can be downloaded from the website of the Geological Survey of Sweden (SGU). Geological maps show how rocks are distributed at the surface and are compiled by studying outcrops of rocks and rock successions in drill cores. By reading geological maps, it is possible to construct a geological transect, which shows how rocks are superimposed to each other. Depending on how much of the underground geology is actually know, such transects can be more or less speculative. Multiple drill holes in an area can therefore add considerable knowledge to making a geological transect more realistic.

I could not find a detailed geological map that covers the southern part of Lake Storsjö and the areas of ongoing geological exploration for Alum shale. Searching in SGU’s online tool kartgenerator did not help either: the area around Myrkviken shows up as a blank. This is a bit surprising given that as many as 28 deep drill holes have been made by SGU within the scope of their Alum shale project in the years 1977 to 1979 (Hedin 2015). Further searches on the internet did not reveal much more information. It thus seems that the results from the extensive survey by SGU in and around Myrviken have up to now only been published in bits and pieces, and not in their entirety. I should mention, however, that an unpublished report exists, but this report does not seem to be available.

To show a geological map for Myrviken, I therefore use Figure 2.2 from Hedin’s (2015) PhD thesis, which includes a very generalized geological map. The dark blue color indicates the occurrences of Cambrian Alum shale, which is prominent south of Myrviken. The map also displays the position of the many drill holes carried out by SGU (red dots).

Part of Figure 2.2. from Hedin (2015) showing a simplified geological map over the Storsjö area. The red dots on the map indicate the drill holes that have been made by SGU between the years 1977 and 1979. The occurrence of Alum shale is indicated by the dark blue color.

One can get a clearer view of where the actual SGU drill holes were located by searching in SGU’s online tool (https://apps.sgu.se/geolagret/ ). It is amazing to see that so many holes were drilled in such a restricted area. It must have cost a fortune to drill all of these and this leaves me wondering why no one has analysed these drill cores in greater details. I could only find the publication by Snäll (1988), who described the rock layers in some selected cores and analyzed the Alum shale for its maturity and elemental chemistry (cores from Klövsjö, Myrviken and Häggenås). But maybe there is much more and I just have not found it!?

By searching https://apps.sgu.se/geolagret/ one can find the position of the SGU drill holes placed on a topographic map. All of these were positioned close to Myrviken. The idea with this dense net of cores was probably to delineate the occurrence of the Alum shale and to better understand how different parts of the shale are stacked upon each other.

In an area where the rocks are heavily influenced by tectonic processes, it is however difficult to distinguish between rocks that are in place and rock packages that have been dislocated. In Jämtland, geologists therefore separate between autochthonous rocks and allochthonous rock packages. The Alum shale exists both as autochthonous and allochthonous layers and is thickest, of course, were several packages were once stacked upon each other. Disentangling these stacked upon packages is difficult (see Figure below) and the study of the SGU drill cores was an attempt to do so.

Figure 3 from Juhlin et al. (2016). Geological cross section through the Myrviken area boreholes based on an unpublished SGU report on Alum shales and shown
at a vertical exaggeration of 10 : 1.
Downloaded from: doi:10.5194/se-7-769-2016

But before I go into details regarding these drill cores, or into what has been published about them, I need to write a bit about the stratigraphy of the Precambrian to Silurian rocks in the region. Here I mean which of the rocks are oldest, which are youngest, where in this sequence can the Alum shale be found and what age do the different rock types have.

Stratigraphy of Precambrian to Silurian rocks in the Storsjö region of Jämtland. The shaded area means that rocks/layers from these periods are missing. Copied from the Bedrock map Af 207 of Östersund SO 19E.

When it comes to the oldest rocks in Jämtland, much of these seem to be missing or are only partly present. Oldest is the Precambrian basement and a quartzite of maybe early Cambrian age. The Alum shale formation is often termed Kläppeformation in Jämtland and belongs to the middle and upper Cambrian time. It is overlain by limestone and shale of Ordovician age. This is a bit different to Skåne, where the Alum shale encompasses the Cambrian and the lowermost Ordovician. And, as those of you who read my blog may remember, the focus of the current exploration in Skåne is on the lowermost Ordovician Alum shale or Dictyonema shale. It is this part of the Alum shale that contains high amounts of vanadium in Skåne. In a short paper from 1981, David Gee suggested that the high vanadium contents that are characteristic for the Dictyonema shale in Skåne and also in Norway could be a means of correlating rocks over larger distances. If so, then the part of the Alum shale with high vanadium content in Jämtland could be the equivalent to that in Skåne and Norway. But, here is the problem: according to the geological literature I have read, Alum shale of lower Ordovician age is not present in Jämtland … and the parts of the Myrviken Alum shale, which contain high amounts of vanadium, uranium, molybdenum, sulphur and organic carbon, are assigned to the upper Cambrian. So – are we dealing with the same shale in Skåne and in Jämtland, or are the target shales of different ages? Maybe a geologist who does research on Alum shale knows more?

The report by Snäll (1988) provides some hints regarding the geochemical composition of the Myrviken, Häggenås and Klövsjö Alum shale. As can be seen in the Table below, all samples from the Upper Cambrian from the three cores exhibit high uranium (U), vanadium (V) and molybdenum (Mb) contents, as well as high sulfur (S) and organic carbon (Corg) percentages. The values for U and V shown here are very similar to those for the Dictyonema shale in Skåne.

Uranium (U), vanadium (V), molybdenum (Mb), sulfur (S) and organic carbon (Corg) in selected samples from deep drill cores in the Storsjö area. Data according to Snäll (1988).

In Skåne, both U and V have been analyzed continuously along drill cores and thus provide a means to clearly differentiating zones with high and low values in the Alum shale. The bits and pieces of samples analyzed in Jämtland, however, do not provide a clear picture of where exactly in the stratigraphic succession of the Alum shale, high U and V values occur.

Nevertheless, as is the case for Skåne, it has long been known that the upper part of the Alum shale contains considerable amounts of uranium and vanadium. Enough drill cores obviously already existed in the late 1970s for the Storsjö area to assess the elemental composition of the Alum shale. Although the available drill cores do not seem to have been fully analyzed (or at least the results have not been published), the knowledge gained was nevertheless important information for Continental Precious, who entered the stage in the year 2005 and applied for exploration licenses for Hackåsen, Viken, Kämpdalen, Bölåsen and Åbbåsen to search for molybdenum.

References:

Hedin, P. 2015. Geophysical studies of the upper crust of the central Swedish Caledonides in relation to the COSC scientific drilling project. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1281. 87 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9320-2.

Gee, D. G. (1981): The Dictyonema-bearing phyllites at Nordaunevoll, eastern Trøndelag, Norway. Norsk Geologisk Tidsskrift, Vol. 61, pp. 93-95. Oslo 1981. ISSN 0029-196X.

Juhlin, C., Hedin, P., Gee, D. G., Lorenz, H., Kalscheuer, T., Yan, P. (2016): Seismic imaging in the eastern Scandinavian Caledonides: siting the 2.5km deep COSC-2 borehole, central Sweden. Solid Earth, 7, 769–787, 2016. http://www.solid-earth.net/7/769/2016/ doi:10.5194/se-7-769-2016

Snäll, S. (1988). Mineralogy and maturity of the Alum shales of south-central Jämtland. Sveriges Geologiska Undersökning, Serie C, nr. 818, 49 pp.

Posted in Alum Shale, Österlen, Jämtland, Thoughts and Tales | Tagged , , , , , , , | 1 Comment